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Agenda for today

1 Negative Weights, diagnostics and solution (Chaisemartin and
d’Haultfoeuille)

2 Solution II (Cengiz at al. stacked diff-in-diff)

3 Pre-Trends

Weakening the parallel trends assumption: Rambachan &
Roth 2019, Pepper & Manski 2018.
Power issues: Roth 2019
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Weights - Recap
From de Chaisemartin and d’Haultfoeuille

Main result: without assuming constant TE,

E
[
β̂
]
= E

[∑
g,t

Wg,t∆g,t

]
, (1)

where Wg,t: weights summing to 1, and ∆g,t =ATE in group g at
time t.

Wg,t ̸= to proportion of units in (g, t), so β ̸= ATE.

But even worse, often times, many weights Wg,t are < 0.

Then, E
[
β̂
]
could be < 0 even if all the ∆g,t are > 0.

Estimating weights = diagnostic of β’s robustness to
heterogeneous TE.
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Groups and time periods

One considers observations that can be divided into G groups
and T periods.

For every (g, t) ∈ {1, ..., G} × {1, ..., T}: Ng,t = number of
observations in group g at period t , and N =

∑
g,t Ng,t = total

number of observations.

Data may be:

individual-level panel or repeated cross-section data set
where groups are, e.g., individuals’ county of birth;
cross-section data set where cohort of birth plays the role of
time.

One may have Ng,t = 1, e.g. because a group is actually an
individual or a firm.
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Notation

We assume binary treatment (results extend to non-binary
treatments as well)

Di,g,t: treatment of observation i in group g and at period t.

(Yi,g,t(0), Yi,g,t(1)): potential outcomes.

Yi,g,t = Yi,g,t(Di,g,t): observed outcome.

For any X, we let Xg,t =
∑Ng,t

i=1 Xi,g,t/Ng,t.

We also let Dg,. (resp. D.,t, D.,.) be the average value of the
treatment in group g (resp. in period t, over all g, t).

β̂fe= OLS coeff. of Dg,t in a reg. of Yi,g,t on group and time FE
and Dg,t.

We then let βfe = E
[
β̂fe

]
.
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Assumptions

1 (Balanced panel of groups) For all (g, t) ∈ {1, ..., G} × {1, ..., T},
Ng,t > 0.

2 (Sharp design) For all (g, t) ∈ {1, ..., G} × {1, ..., T} and
i ∈ {1, ..., Ng,t}, Di,g,t = Dg,t.

3 (Independent groups) The vectors
(Y1,g(0), Y1,g(1), D1,g, ..., YT,g(0), YT,g(1), DT,g) are mutually
independent.

4 (Strong exogeneity) For all g ∈ {1, ..., G},
E(Yg,t(0)− Yg,t−1(0)|Dg,1, ..., Dg,T ) = E(Yg,t(0)− Yg,t−1(0))
(shocks independent of her past, present and future treatments)

5 (Common trends) For all t ≥ 2, E(Yg,t(0)− Yg,t−1(0)) does not
vary across g.
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Parameters of interest

Let ∆TR = 1
N1

∑
i,g,t (Yi,g,t(1)− Yi,g,t(0)), with

N1 =
∑

(g,t):Dg,t=1 Ng,t .

Let δTR = E
[
∆TR

]
: δTR is the ATT.

Let ∆g,t denote the ATE in cell (g, t):

∆g,t =
1

Ng,t

Ng,t∑
i=1

(Yi,g,t(1)− Yi,g,t(0)) .

Then δTR satisfies

δTR = E

 ∑
g,t:Dg,t=1

Ng,t

N1
∆g,t

 .

We now show a similar result on βfe, but with additional, possibly

< 0 weights.
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βfe = weighted sum of ATEs under common trends

Let ϵfe,g,t= residual of observations in cell (g, t) in regression of Dg,t

on a constant, group FEs, and time FEs.

We define the weights wfe,g,t as:

wfe,g,t =
ϵfe,g,t∑

(g,t):Dg,t=1
Ng,t

N1
ϵfe,g,t

.

If assumptions maintained above hold, then,

βfe = E

 ∑
(g,t):Dg,t=1

Ng,t

N1
wfe,g,t∆g,t

 .

Therefore, in general βfe ̸= δTR
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Example

FE regression with 2 groups 3 periods, and group 1 only treated
at period 3, group 2 treated at periods 2 and 3. N obs. the same
in each (g, t). Then, ϵfe,g,t = Dg,t −Dg,. −D.,t +D.,., so:

fe,1,3 = 1− 1/3− 1 + 1/2 = 1/6

fe,2,2 = 1− 2/3− 1/2 + 1/2 = 1/3

fe,2,3 = 1− 2/3− 1 + 1/2 = −1/6.

Weight definition and some algebra imply:

βfe = 1/2E(∆1,3) + E(∆2,2)− 1/2E(∆2,3).

βfe ̸= δTR = 1/3E(∆1,3) + 1/3E(∆2,2) + 1/3E(∆2,3).
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βfe may be of opposite sign than the ∆g,ts

βfe = 1/2E(∆1,3) + E(∆2,2)− 1/2E(∆2,3).

The weight assigned to group 2 in period 3 is < 0.

Then, βfe may be very misleading measure of treatment effect.

E.g., assume E(∆1,3) = E(∆2,2) = 1 and E(∆2,3) = 4. Then,

βfe = 1/2× 1 + 1− 1/2× 4 = −1/2.

βfe < 0 while E(∆1,3), E(∆2,2), and E(∆2,3) are all > 0.

Negative weights are an issue only if E(∆g,t)s heterogeneous. If
E(∆1,3) = E(∆2,2) = E(∆2,3) = 1, then βfe = 1.
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Intuition for the negative weights

In this simple example, one can show that
βfe = (DID1 +DID2)/2, with

DID1 = E(Y2,2)− E(Y2,1)− (E(Y1,2)− E(Y1,1))

DID2 = E(Y1,3)− E(Y1,2)− (E(Y2,3)− E(Y2,2)) .

Control group in DID2, group 2, is treated both in the pre and
in the post period. Therefore, under common trends, one can
show that DID1 = ∆TR

2,2 , but DID2 = ∆TR
1,3 − (∆TR

2,3 −∆TR
2,2 ).

DID2 is equal to average treatment effect in group 1 period 3,
minus change in average treatment effect of group 2 between
periods 2 and 3 (see also Chaisemartin, 2011, Borusyak and
Jaravel, 2017, and Goodman-Bacon, 2018).

Intuitively, mean outcome of groups 1 and 2 may follow different
trends from period 2 to 3 either because group 1 becomes
treated, or because treatment effect changes in group 2.
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Characterizing (g, t) cells weighted negatively by βfe

βfe more likely to assign negative weight to periods where a
large fraction of observations treated, and to groups treated for
many periods.

Negative weights = concern when treatment effects may differ at
periods when many / few groups treated, or across groups
treated for many periods / few periods.

In staggered designs (where Dg,t ≥ Dg,t−1 for all g, t):

wg,t is decreasing in t (also Borusyak and Jaravel, 2017)
groups adopting treatment earlier more likely to have < 0
weights.
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Summary
Chaisemartin and d’Haultfœuille

β̂twfe is a weighted average of ATE in each treated cell, but
weights can be negative

Weights are the product of sample share and residuals from a
regression of treatment indicator on group and period FE.

Negative weights are a concern only when treatment effects are
heterogenenous.

Aside / note: New paper with multiple treatments. With
multiple treatments, not only negative weights, but also
contamination from other treatments in ATT (see Chaisemartin
and d’Haultfœuille (2021).
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Solution II
Chaisemartin and d’Haultfœuille

1 Estimate weights as diagnostic measure of β’s robustness to
heterogeneous TE. Test for negative weights: ratio between∣∣∣β̂twfe

∣∣∣ and S.D. of the weights.

2 Intuitively, if ratio is close to 0 , the β̂twfe and ATT can be of
opposite signs, even if amount of TE heterogeneity is small.

3 Alternative estimand: average of the ATEs of switching cells
(joiners’ TE and leavers’ TE), weighted by sample shares,
consequently, different estimator

4 Notice that this will capture only instantaneous effects, no long
term (for long-term, use ”long differences” from Callaway
Sant’Anna).

5 For staggered adoption: average of the treatment effect at the
time when a group starts receiving the treatment (joiners’ TE ),
using only treated-untreated comparisons.

6 Placebo estimator for pre-trends.

Stata commands: twowayfeweights, fuzzydid, did multiplegt
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Stacked differences-in-differences: Steps
Cengiz, Dube, Lindner, and Zipperer (2019)

1 Create separate datasets for each treatment-cohort g.

2 Keep all units treated in that cohort, and all units that are not
treated by year g + k where g is the cohort-treatment year and k
is the outermost relative year that you want to test (e.g. if you
do an event study plot from −5 to 5 , would equal 5 ).

3 Keep only observations within years g − k and g + k for each
cohort-specific dataset, and then stack them in relative time.

4 Append all cohort-specific datasets together.

5 Run the same TWFE estimates as in standard DiD but include
interactions for the cohort-specific dataset with all of the fixed
effects, controls, and clusters.
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Stacked differences-in-differences: Application
Cengiz, Dube, Lindner, and Zipperer (2019)

Impact of minimum wage changes in US on low-wage jobs across
a series of 138 state-level minimum wage changes between
1979-2016.

138 event h-specific datasets including the outcome variable and
controls for the treated state h and all other “clean controls
states” in timeframe (-3 to +4)

For each event, run a ”single treatment” diff-in-diff:

Comparing only switchers to not (yet) treated units (drop
already treated states).

Prevents negative weighting but less statistical power (less
observations included).
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Pre-trends: Levels and trajectories
The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and
Pregnant and Other Applications, Kahn-Lang and Lang 2019

1 Similarity in levels, not only trends, makes common trends
assumption more plausible: why do levels differ, and can the
same mechanism affect trends?

2 If levels (or distribution) differs, functional form matters, and
implies a different counterfactual - should be theoretically
justified.

Example: levels vs. log.

3 Pre-trends tests are not sufficient to establish ”parallel trends”,
e.g. because of false negatives (more later, Roth 2019)

4 Test sensitivity to range of assumptions on trends (next up).
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Pre-trends and the parallel trends assumption

Researchers usually seek reassurance for the parallel trends
assumption by looking at pre-trends for treatment and control groups,
e.g. significant coefficient on ”leads”.
Main issues:

1 Parallel trends may not hold exactly.

2 Statistical power in testing for pre-trends.
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Relaxation of parallel trends
An Honest Approach to Differences-in-Differences, Rambachan and Roth 2019

Classical parallel trend assumption requires no difference in
trend between treatment and control. δ=0

Instead, new method allows δ to lie in a set of trend differences
∆, specified by the researcher. The common parallel trends
assumption δ=0 is then a ”special case” in this framework.
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Relaxation of parallel trends
An Honest Approach to Differences-in-Differences, Rambachan and Roth 2019

Deviation from a linear trend bounded above by M

∆SD(M) := {δ : |(δt+1 − δt)− (δt − δt−1)| ⩽ M,∀t} (2)

where for t > 0, δt refers to the t-th element of δpost , δ−t refers to the t-th element
of δpre , and we adopt the convention that δ0 = 0.8 The parameter M ⩾ 0 governs
the amount by which the slope of δ can change between consecutive periods. 9 In
the special case where M = 0, ∆SD(0) requires that the difference in trends be
exactly linear.
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Pre-trends: bounds
Manski and Pepper 2018 (Special case of Rambachan and Roth) How Do
Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using
Bounded-Variation Assumptions.

Bounds informed by pre-treatment trend differences.

Look at pre-treatment values of outcomes in ⊤&C

Calculate all the changes btw T&C across consecutive years in
the pre-treatment periods

[YT,t−1 − YC,t−1]− [YT,t−2 − YC,t−2] = δt,t−1

Standard parallel pre-trend assumption assumes δt,t−1 = 0∀t
before treatment

Bound Parameter = maximum value across all δt,t−1
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Choices of ∆

Linear: ∆ = {δ : δ1 = −δ−1}
Linear approx.: ∆SD(M)=[−δ−1 −M,−δ−1 +M ] .

Based on pre-trend diff: ∆RM (M̄) =
{
(δ−1, δ1)

′
: |δ1| ⩽ M̄ |δ−1|

}
.
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Example application
Rambachan and Roth 2019 based on Lovenheim and Willen 2019

Long run effect of collective bargaining on employment. Impact
of state-level public sector duty-to-bargain (DTB) laws on
student labor market outcomes.

Outcome considered: employment.
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Example application
Rambachan and Roth 2019 based on Lovenheim and Willen 2019

For M < 0.01, opposite sign by gender.

For M > 0.01, cannot reject null effects.
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Summary
Rambachan and Roth 2019

Possible differences in trends are restricted to some set ∆,
instead of assuming δ=0.

Partial (set) identification of treatment effect, given M .

Choice of M depends on the underlying economic
mechanism that leads to violation - benchmark M using
knowledge of the likely magnitudes of those mechanisms.

It is possible to back out the breakdown value of M at which
treatment effects are no longer significant.

R Code: HonestDID
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Pre-trends: Power issues
Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends.
Roth 2019

1 Failure to reject the null of parallel trends does not
imply absence of non-common trends ̸= existence of
parallel trends (false negative) in case of underpowered
test.

2 This may introduce bias, exacerbated by the rejection of the
pre-trends.
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Pre-trends: Power issues - Roth 2019

True causal effect is 0 (yit(1) = yit(0)), and true model is:

yit(0) = αi + ϕt +Di × g(t) + ϵit (3)

With underlying upward trend g(t) = γt
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Pre-trends: Power issues, take-aways from simulation
Roth 2019

When there is an underlying trend, pre-trends testing
exacerbates bias.

Statistical noise in finite sample may prevent detecting trend

Blue draws would not detect a pre-trend

True slope between -1 and 0 would be −β−1, and β between 0
and 1, but in the blue ones β = 0

If we get these draws (the cases where we fail to detect the
underlying trend), we will produce large treatment estimates
because of this failure.

→ ”Passing” the pre-trends test, paradoxically leads to more
biased estimates.
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Pre-trends: Power issues
Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends.
Roth 2019

Pre-trends tests often underpowered.

Overstatement of the treatment effect follows from rejection of
parallel trends assumption due to ”noise”.

Reporting DiD effects conditional on surviving a pre-trend test
of introduces a pre-testing problem, which can exacerbate the
bias from an underlying trend, and lead to wrong Cl.

Additionally: pre-trends testing is a special case of ”pre-testing”
(proceed only conditional on ”passing” the test) → standard
errors need to be corrected (Roth 2019)

Parametric approaches: impose a structure for differential trends
(e.g. linear), control parametrically for it without pre-testing.

Alternative relaxations of parallel trends assumptions: e.g.
Rambarachan & Roth (2019), Manski & Pepper (2018)

Code: Shiny app
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Conclusion

Intuition for negative weights

de Chaisemartin & d’Hauftfoeille diagnostics and solution +
stacked diff-in-diff solution.

Problems with parallel trends → ”Pre-test” honestly + with
caution!

May not hold in general → weaker assumption + structure
→ bounds.
Pre-trend tests underpowered: may lead to biased estimates.
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