Applied Microeconometrics

Lecture 6

Manuel Bagues

August 2022 Lecture Slides

- Canonical model
- More than two periods and variation in treatment timing
 - When treatments are heterogeneous across units or time \rightarrow TWFE estimate does not have a meaningful interpretation
- Two problems:
 - Arbitrary weights (can be even negative)
 - 'Forbidden' comparisons (using already treated units)
- Dynamic TWFE: including lags and leads
 - Works if only heterogeneity in time since treatment...
 - ...but fails in the presence of heterogeneous treatment effects across adoption cohorts.
 - Note: this problem affects also evaluation of pre-trends

- Diagnostic approaches: assess how relevant is the problem!
 - Chaisemartin and D'Haultfoeuille (2020)
 - heterogeneity in treatment effects that would reverse the sign of the estimate
 - Goodman-Bacon (2021)
 - report weights for each group of comparisons: how much weight on 'forbidden' comparisons?
 - Jakiela (2021)
 - negative weights?
 - test the constant treatment assumption
- Several new estimators for staggered DID, with some common features:
 - Use only 'clean' comparisons between treated and non-treated groups
 - Aggregate them using some type of user-specified weights
- Let us see one of them in practice: Callaway and Sant'Anna (2021)

E.g. Callaway and Sant'Anna (2021)

- Let us assume parallel trends, no anticipation, and SUTVA
- Two possible control groups:
 - never-treated units
 - all not-yet treated units
- Several options for weights available
- When the number of periods and groups is small you may report all relevant ATT(g,t)
- Example from problem set 3:
 - Impact of minimum wage on teen employment
 - Sample of US counties, years 2003-2007, N=2,500
 - Some states treated in 2004, 2006 and 2007

. csdid lemp lpop, i(countyreal) t(year) g(first_treat)

.....

Difference-in-difference with Multiple Time Periods

Number of obs = 2,500

)utcome model : weighted least squares
Freatment model: inverse probability tilting

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
32004						
t_2003_2004	0145329	.0221264	-0.66	0.511	0579	.0288341
t_2003_2005	0764267	.0286661	-2.67	0.008	1326113	0202422
t_2003_2006	1404536	.035373	-3.97	0.000	2097834	0711239
t_2003_2007	1069093	.0328863	-3.25	0.001	1713652	0424533
32006						
t_2003_2004	0006112	.022198	-0.03	0.978	0441185	.0428961
t_2004_2005	006267	.018481	-0.34	0.735	042489	.0299551
t_2005_2006	.0009473	.0193812	0.05	0.961	0370391	.0389337
t_2005_2007	0413123	.0197171	-2.10	0.036	0799571	0026674
j 2007						
t_2003_2004	.0266993	.0140628	1.90	0.058	0008633	.0542619
t_2004_2005	0045906	.0157101	-0.29	0.770	0353818	.0262007
t_2005_2006	0284515	.0181775	-1.57	0.118	0640787	.0071758
t_2006_2007	0287821	.0162333	-1.77	0.076	0605988	.0030347

Control: Never Treated

Plot results for the 2006 group:

csdid_plot, group(2006)

• Aggregate result for ATE

- . // Aggregate result for ATE
- . estat simple

Average Treatment Effect on Treated

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
ATT	0417577	.0115008	-3.63	0.000	0642989	0192165

Test for pretrend

. // Test for pretrend . estat pretrend Pretrend Test. H0 All Pre-treatment are equal to 0 chi2(5) = 6.8436 p-value = 0.2325

- Chaisemartin and D'Haultfoeuille (2020)
 - Can be applied when the treatment switches on and off
 - Stata command: twowayfeweights
- Sun and Abraham (2021)
 - last-to-be-treated as control group
- Alternative solution: stacked regression

- Create separate datasets for each treatment-cohort g.
- **2** Keep all units treated in that cohort, and all units that are not treated by year g + k where g is the cohort-treatment year and k is the outermost relative year that you want to test (e.g. if you do an event study plot from -5 to 5, would equal 5).
- Solution Section 8 Keep only observations within years g k and g + k for each cohort-specific dataset, and then stack them in relative time.
- Append all cohort-specific datasets together.
- Run the same TWFE estimates as in standard DiD but include interactions for the cohort-specific dataset with all of the fixed effects, controls, and clusters.

Shortcoming: Prevents negative weighting but shorter-run estimates and less statistical power (smaller sample)

- Impact of minimum wage changes in US on low-wage jobs across a series of 138 state-level minimum wage changes between 1979-2016.
- 138 event h-specific datasets including the outcome variable and controls for the treated state h and all other 'clean controls states' in timeframe (-3 to +4)
- For each event, run a 'single treatment' diff-in-diff:
- Comparing only switchers to not (yet) treated units (drop already treated states).

- Different heterogeneity-robust DID methods available (see Table 2 in Roth, Sant'Anna, Bilinski and Poe 2022)
- Which one? Trade-off between efficiency and required assumptions
- Typically very similar results

Other issues: non-parallel trends

- Causal interpretation of DD valid only under "parallel trends" assumption
- Untestable: parallel trends in the past provide only supportive evidence, they are neither a necessary nor a sufficient condition
 - Example by Kahn-Lang and Lang (2020): boys' and girls' height follow parallel trends until age 13, but this does not imply that bar-mitzvahs (for boys at age 13) affect height
- If groups differ in levels, why should we expect similar trends?
 - Example: liberal states tend to adopt certain policies and they may be exposed to different shocks
 - \rightarrow Similarity in levels, not only trends, makes common trends assumption more plausible: *why* do levels differ, and can the same mechanism affect trends?

• Parallel trends assumption sensitive to the functional form assumption

- If levels (or distribution) differs, functional form matters, and implies a different counterfactual should be theoretically justified.
- Example: levels vs. log.
- Parallel trends conditional on covariates

Three problems:

- Absence of a statistically significant pre-trend does not necessarily imply that parallel trends hold
- Onditioning on the result of a pre-test can introduce pre-test bias
- Even if a significant pre-trend is observed, we may want to learn something from the data.

Solutions:

- Increase the power of pre-tests
 - Power calculations
 - Reverse the role of the null and the alternative hypotheses: e.g. test the null of pre-existing trends sufficient to eliminate effect
- Bounds approach: post-treatment violation of parallel trends assumed to be no larger than maximal pre-treatment violation
- Adjust your S.E. for pre-testing as in Roth (2019)

- Pretrend tests are often underpowered
- Reporting DID effects conditional on surviving a pre-trend test of introduces a pre-testing problem, which can exacerbate the bias from an underlying trend, and lead to wrong CI
- If a pre-trend truly exists, then with sample noise, cases leading to non-rejection of parallel trends in the pre-period would also have stronger difference in the post, resulting in an overstatement of the TE ('mean-reversion')

Pre-trends: Power issues - Roth 2019

True causal effect is $0 (y_{it}(1) = y_{it}(0))$, and true model is:

$$y_{it}(0) = \alpha_i + \phi_t + D_i \times g(t) + \epsilon_{it}$$

With underlying upward trend $g(t)=\gamma t$

15/20

(1)

- When there is an underlying trend, pre-trends testing exacerbates bias.
- Statistical noise in finite sample may prevent detecting trend
- Blue draws would not detect a pre-trend
- True slope between -1 and 0 would be $-\beta_{-1}$, and β between 0 and 1, but in the blue ones $\beta = 0$
- If we get these draws (the cases where we fail to detect the underlying trend), we will produce large treatment estimates because of this failure.
- $\bullet \rightarrow$ "Passing" the pre-trends test, paradoxically leads to more biased estimates.

- Parametric approaches: impose a structure for differential trends (e.g. linear), control parametrically for it without pre-testing
- Alternative relaxations of parallel trends assumptions: Rambarachan Roth (2019), Freyaldenhoven et al. (2019) but provide valid inference only from an ex ante sampling perspective, not conditional on passing a pre-test.

Example: Did non-pharmaceutical interventions (lockdowns) increased growth post1918 Flu? (CLV 2020)

(a) NPI intensity and log manufacturing employ-

Example: Did non-pharmaceutical interventions (lockdowns) increased growth post1918 Flu? (CLV 2020)

Could a linear difference in trends explain the evidence?

ment.

Example: Did non-pharmaceutical interventions (lockdowns) increased growth post1918 Flu? (CLV 2020)

